
K-THEORY AND APPLICATIONS ∥ TOPOLOGY LEARNING SEMINAR

BASED ON TALKS GIVEN BY MICHELLE DAHER, DANIEL GALVIN, CSABA NAGY,

AND MARK POWELL

DANIEL GALVIN

Contents

1. Introduction and motivation 1
1.1. Introduction 1
1.2. Motivation, or applications to topology 1
2. Projective modules and K0 2
2.1. Definition of K0 2
2.2. Functoriality 3
2.3. Dedekind domains 4
3. Constructing projective modules 7
3.1. Proof of Theorem 3.3 8
4. K1 and the Whitehead group 9
4.1. Definition of K1 9
4.2. The Whitehead group 11
4.3. A Mayer-Vietoris sequence for K0 and K1 12
5. Whitehead torsion 14

1. Introduction and motivation

1.1. Introduction. Algebraic K-theory is the study of a family of functors

Kn : Ring → Ab

where Ring denotes the category of rings and Ab denotes the category of abelian groups. For
our purposes, we are only interested in this functor for values n ∈ {0, 1, 2}. More generally,
we have also have a family of functors Kn : C → Ab where C is some other category.

There functors will also have a “reduced” version which will be denoted by K̃n and will
often be more useful practically.

1.2. Motivation, or applications to topology. In this seminar we are particular inter-
ested in K-theory because of its applications in manifold topology. We will now briefly outline
some of these.

1.2.1. Wall’s finiteness obstruction. We say a manifold X is finitely dominated if there exists
K a finite CW complex with maps r : K → X, i : X → K such that r ◦ i ≃ IdX .
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Then for any finitely dominated X there exists an element denoted [X] ∈ K̃0(Z[π1(X)])
such that X has the homotopy type of a finite CW complex if and only [X] = 0. Furthermore,

for all α ∈ K̃0(Z[π1(X)]) there exists a finitely dominated manifold X such that [X] = α.

1.2.2. Siebenmann’s end obstruction. Let Wn be an open manifold. We define a tame end,
denoted E to be a sequence {W ⊃ U1 ⊃ U2 . . . } with π1(U1) ∼= π1(U2) ∼= . . . and each Ui

connected, open and finitely dominated with ∩iUi = ∅. Furthermore, we say that E is collared
if has a neighbourhood homeomorphic to Mn−1 × [0,∞) for some compact Mn−1.

Then for n ≥ 6 a tame end E is collared if and only if [E ] = 0 ∈ K̃0(Z[π1(W )]) where
[E ] := limi[Ui].

1.2.3. Whitehead torsion. Let X and Y be finite CW complexes with f : X
≃−→ Y . We say

that f is simple if f ≃ [X
σ1−→ X1

σ2−→ X2
σ3−→ . . .

σk−→ Xk = Y ] where each σi is a homo-
topy equivalence corresponding to an elementary expansion or contraction. An elementary
expansion is the canonical homotopy equivalence between a complex K and K ′, the complex
formed by adding a cancelling pair of cells to K. An elementary contraction is simply the
reverse of an elementary expansion.

We can associate to any homotopy equivalence f : X
≃−→ Y a quantity named the Whitehead

torsion τ(f) ∈ Wh(π1(Y )) where Wh(π1(Y )) is defined as a quotient of K1(Z[π1(Y )]). Then
f is a simple homotopy equivalence if and only τ(f) = 0.

1.2.4. The s-cobordism theorem. Let (Wn;M,N) be an h-cobordism. That is, ∂W = M⊔−N

and both inclusions i : M
≃
↪−→ W and N

≃
↪−→ W are homotopy equivalences. Then for n ≥ 5 we

have thatW ∼= M×I if and only if τ(i) = 0. Moreover, for any group G and for all x ∈ Wh(G)
there exists an h-cobordism (Wn,M,N) with π1(X) ∼= G such that τ(i : M ↪→ W ) = x.

1.2.5. Pseudo-isotopy. Let Mn be a smooth manifold with n ≥ 4 and let f0, f1 : M → M be
two self-diffeomorphisms. A pseudo-isotopy between f and g is a diffeomorphism F : M×I →
M×I such that FM×{i} = fi×Id{ i}. We can associate to any such pseudo-isotopy an element
Σ(F ) ∈ Wh2(π1(M)) where Wh2(π1(M)) is defined as a quotient of K2(Z[π1(M)]). Then F
is isotopic to an isotopy between f0 and f1 only if Σ(F ) = 0. Note that here the reverse
implication does not hold in general, and that there is a secondary obstruction that will not
be mentioned here, although it is also K-theoretic in nature.

1.2.6. Topological K-theory. Coming soon...

2. Projective modules and K0

2.1. Definition of K0. In all that follows let Λ be a ring (with unit) and all of our modules
will be left Λ-modules unless stated otherwise.

Definition 2.1. We say that a module M is projective if for any modules A and B as shown
below

M

A B 0

there exists the dotted map above M → A such that the diagram commutes.
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Equivalently, M is a projective module if there exists a module N such that M ⊕ N is a
free module.

Definition 2.2. We now define the projective module group K0(Λ), which we define formally
as the abelian group having generators [P ] for all finitely generated projective modules P ,
and relations given by [P ⊕Q] = [P ] + [Q]. Equivalently K0(Λ) can be defined as the formal
differences of modules (with the same group operation) in the following manner.

K0(Λ) =

{
[P ]− [Q]

[P ]− [Q] ∼ [P ′]− [Q′]

}
where P ′, Q′ are any modules satisfying P ⊕Q′ ⊕ F ∼= P ′ ⊕Q⊕ F for some free module F .

If Λ is commutative then we can impose more structure on K0(Λ). In this case, define a
product in the projective module group as [P ] · [Q] := [P ⊗Λ Q]. This turns K0(Λ) into a
commutative ring.

Example 2.3. Since all projective Z-modules (projective abelian groups) are free, we have
the following:

K0(Λ)
∼=−→ Z

[Zn] 7→ n.

In fact, if Λ is a field, division ring, principal ideal domain, or a local ring then we similarly
have that all projective modules are free. Hence, in all of these cases we also have K0(Λ) ∼= Z.

2.2. Functoriality. Let f : Λ → Λ′ be a ring homomorphism and let M be a Λ-module. We
can then construct a Λ′-module f∗(M) := Λ′ ⊗Λ M by using f to view Λ′ as a Λ-module.
This construction has the nice property that if M is free then f∗(M) is also. Similarly, if M
is projective then f∗(M) is also projective. This second fact means that f∗ induces a map

f∗ : K0(Λ) → K0(Λ
′).

It is not hard to see that this map sends the trivial module to the trivial module and respects
compositions. Hence, we see that K0 is actually a functor Ring → Ab as claimed in the
introduction.

Example 2.4. For any ring Λ we have a natural map i : Z → Λ given by sending 1 ∈ Z to
the unit in Λ. This induces a map i∗ : K0(Z) → K0(Λ) given by sending n 7→ [Λn]

Definition 2.5. Suppose that we have a map j : Λ → F where F is a field or division ring.
Then we have the following sequence of maps

Z ∼= K0(Z) K0(Λ) K0(F ) ∼= Z.

IdZ

i∗ j∗

Therefore, we have the following identification

K0(Λ) ∼= (ker j∗)⊕ (im i∗).

We then define the reduced projective module group K̃0(Λ) := ker j∗. Such a j exists if Λ is
commutative, so we can certainly make this definition in those cases.

Remark 2.6. Note that in all cases we could define K̃0(Λ) to be the quotient K0(Λ)/ im(i∗),

but we would not necessarily have a splitting K0(Λ) = K̃0(Λ)⊕ Z.
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Exercise 2.7. Show that for Λ = Λ1 × · · · × Λk,

K0(Λ) ∼= K0(Λ1)× · · · ×K0(Λk).

2.3. Dedekind domains.

Definition 2.8. A ring Λ is a Dedekind domain if it is commutative, has no zero-divisors
and has the property that for all ideals a ⊂ b ◁ Λ then there exists an ideal c ◁ Λ such that
a = bc.

Remark 2.9. Note that the ideal c is uniquely determined (unless a = b = 0). Assume we
have two ideals c and c′ with a = bc = bc′. Let x be such that (x) ⊂ c, then there exists an
ideal d such that (x) = cd. Hence, bdc = bdc′, and using that Λ is commutative and has no
zero-divisors we cancel the factor of (x) on both sides to conclude c = c′.

We now give an equivalence relation on ideals in Λ and consider the set of ideals under this
relation.

Definition 2.10. Let Λ be a Dedekind domain. We say ideals a, b ◁ Λ are equivalent, written
a ∼ b, if there exists elements x, y ∈ Λ such that xa = yb. We call an equivalence class of
ideals, denoted {a}, the ideal class. We then define the ideal class group C(Λ) to be the set
of ideal classes.

We now show that the ideal class group forms a group under multiplication. First, a lemma.

Lemma 2.11. Let a be a principal ideal. Then an ideal b is a principal ideal if and only if
a ∼ b.

Proof. First, assume b is principal. This means that there exist elements x, y ∈ Λ such that
a = xΛ, b = yΛ. But then we have ya = xyΛ = xb, and so a ∼ b. Conversely, assume that
a ∼ b. So there exists elements x, y ∈ Λ such that xa = yb. Now we know that a is a principal
ideal, which implies that xa is also a principal ideal. It follows that yb is a principal ideal
and hence b is also, completing the proof. □

Proposition 2.12. Let Λ be a Dedekind domain. The ideal class group C(Λ) forms a group
under multiplication.

Proof. We need to show that the multiplication operation is well-defined and has a unit and
inverses.

To show well-definedness, notice that {ab} = {(xa)b} since (xa)b = x(ab) and hence if
xa = x′a′ then {ab} = {(xa)b} = {(x′a)′b} = {a′b}. Using commutativity finishes the proof
of well-definedness.

The unit for the multiplication is given by (x) for any element x ∈ Λ. The fact that
this element is well-defined and acts as a unit under multiplication follows directly from
Lemma 2.11.

Inverses exist from the properties of Dedekind domains. Let x ∈ a ◁ Λ. Then there exists
an ideal b ◁ Λ such that ab = (x), and such a b is unique (see Remark 2.9). □

We now relate these ideas for ideals in a Dedekind domain Λ to projective Λ-modules with
a lemma and proposition.

Lemma 2.13. Let Λ be a Dedekind domain and a, b ◁ Λ be ideals. Then a ∼ b if and only
if a ∼= b as Λ-modules.
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Proof. First assume a ∼ b, and so there exist x, y ∈ Λ such that xa = yb. We then have
the Λ-module isomorphism a ∼= xa induced by the map z 7→ xz. We conclude that a ∼= b as
Λ-modules.

Now assume that we have a Λ-module isomorphism φ : a → b. Now let x ∈ a. We have
that xb = xφ(a) = φ(xa) = φ(x)a, and hence that a ∼ b. Note that here in the final equality
we have used the fact that φ(xz) = φ(x)z for all z ∈ a. □

Proposition 2.14. Let Λ be a Dedekind domain. Then we have the following:

(1) Let a ◁ Λ be an ideal. Then a is a finitely generated projective Λ-module.
(2) Let P be a finitely generated projective Λ-module. Then there exist a1, . . . , ak ◁ Λ

such that P ∼= a1 ⊕ · · · ⊕ ak.

Proof. We start with (1). Let (x), b ◁ Λ be such that (x) = ab. Clearly x ∈ ab and so we
can write x as x = y1z1 + · · · + ykzk with yi ∈ a and zi ∈ b. Now define a map f : a → Λk

which sends

y 7→
(y1z1

x
, . . . ,

ykzk
x

)
.

Note that this map is defined since yizi ∈ (x) and well-defined since Λ has no zero-divisors.
We also have a map g : Λk which sends (x1, . . . , xk) 7→ y1x1 + · · · ykxk, and it is easy to see
that g ◦ f = Ida. If we define Q := ker(g), this provides a splitting a⊕Q ∼= Λk, and hence a
is a finitely generated projective Λ-module.

Now for (2). Assume P a finitely generated projective Λ-module. Then there exists a Q
such that P ⊕ Q ∼= Λk and hence we have an embedding i : P ↪→ Λk. We now proceed by
induction on k. If k = 1, then P embeds in Λ and hence P is an ideal Λ, which completes
the base case. Now consider the following of sequence of maps:

P Λk = Λk−1 ⊕ Λ Λi

j

π2

where π2 denotes the projection map onto the second factor and j : P → Λ is defined as to
make the diagram commute. Now im(j) ◁ Λ is an ideal and hence a projective Λ-module by
(1). Since P is also a projective Λ-module, we have the diagram:

im(j)

P im(j) 0

and hence P ∼= ker(j) ⊕ im(j). This means we have an embedding ker(j) ↪→ Λk−1 and
our induction hypothesis we can write ker(j) ∼= a1 ⊕ · · · ⊕ ak−1 for some ideals al. Setting
ak := im(j) gives the required result. □

Theorem 2.15 (Steinitz). Let Λ be a Dedekind domain and let a1, . . . , ar, b1, . . . , bs ◁ Λ be
ideals. Then a1⊕· · ·⊕ar ∼= b1⊕· · ·⊕bs if and only if r = s and {a1 · · · ar} = {b1 · · · bs} ∈ C(Λ).

This result gives an interesting way of viewing the ideal class group in terms of K-theory.

Corollary 2.16. Let Λ be a Dedekind domain and let K0(Λ) ⊃ ⟨[Λ]⟩ ∼= Z be the infinite-cyclic
group generated by trivial module. Then C(Λ) ∼= K0(Λ)/⟨[Λ]⟩.
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Proof. Let f : C(Λ) → K0(Λ)/⟨[Λ]⟩ be the map sending {a} 7→ [a] + Z. We claim this is
well-defined and an isomorphism. It is clearly well-defined, as a ∼ b implies that a ∼= b as
modules by Lemma 2.13.

Now we show f is a homomorphism. This is straightforward since we have f({ab}) =
[ab] + Z = [a] + [b] + Z = f({a}) + f({b}) where for the second equality we have used
Theorem 2.15.

For surjectivity, note by Proposition 2.14 we can write any projective module P as P ∼=
a1 ⊕ · · · ⊕ ak ∼= Λk−1 ⊕ (a1 · · · ak), which is clearly contained in f({a1 · · · ak}).

Finally, we show f is injective. Let a and b be such that [a] + Z ∼= [b] + Z. This implies
a ⊕ Λk ∼= b ⊕ Λl for some k and l, but by Theorem 2.15 we have that k = l and that
{a} = {aΛ · · ·Λ} = {bΛ · · ·Λ} = {b}. This completes the proof. □

Definition 2.17. Let Λ be a Dedekind domain. We can now define a rank map rank: K0(Λ) →
Z which sends [a1⊕ · · · ⊕ ak] 7→ k which is well-defined by Theorem 2.15. This gives an alter-
nate way of defining reduced K0 in a Dedekind domain. Define

K̃0(Λ) := ker(rank) ∼= K0(Λ)/⟨[Λ]⟩ ∼= C(Λ).

We now conclude this section with a (partial) proof of the main theorem.

Proof of Theorem 2.15. For simplicity, we only show the forwards implication i.e. we show
that a1 ⊕ · · · ⊕ ar ∼= b1 ⊕ · · · ⊕ bs implies r = s and {a1 · · · ar} = {b1 · · · bs}.

Let φ : a1⊕· · ·⊕ar → b1⊕· · ·⊕bs be an isomorphism of modules. We want to show that we
can write this isomorphism in terms of a matrix. To see this, consider the following. Suppose
we have two ideals a, b ◁ Λ and θa → b a module homomorphism between them. Let Q(Λ)
denote the field of fractions of Λ. We claim that there exists a unique q ∈ Q(Λ) such that for
all x ∈ a θ(x) = qx ∈ Q(Λ) ⊃ Λ. To see this, pick x0 ∈ a with x0θ(x) = θ(x0x) = θ(x0)x ∈ Λ.
This gives

θ(x) =
θ(x0x)

x0
=

θ(x0)

x0
x ∈ Q(Λ).

Now set q := θ(x0)/x0.
The above means that we can write our isomorphism φ as a matrix. In other words, there

exists an (r × s)-dimensional matrix Q ∈ Q(Λ)r×s that φ(x) = Qx ∈ Q(Λ)s. Since φ is an
isomorphism, this matrix is invertible and hence we have a matrix Q−1 ∈ Q(Λ)s×r which
represents φ−1 : b1 ⊕ · · · ⊕ bs → a1 ⊕ · · · ⊕ ar. Naturally, this gives us that r = s.

Now we claim that b1 · · · br = (detQ)a1 · · · ar, which would imply that {a1 · · · ar} =
{b1 · · · br} and hence complete the proof. Let xi ∈ ai. We then have

(detQ)x1 · · ·xr = det

Q


x1

. . .

xr


 = det

φ


x1

0
...

0

 , . . . , φ


0
...

0

xr



 ∈ b1 · · · br.

This implies that (detQ)a1 · · · ar ⊂ b1 · · · br. The exact same argument with Q−1 rather
than Q implies the other inclusion b1 · · · br ⊂ (detQ)a1 · · · ar, and hence the claim is proved,
completing the proof. □
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3. Constructing projective modules

In this section we will describe a method for producing new projective modules. First,
some preliminaries. Suppose we have the following pullback square of rings such that at least
one of j1 or j2 is surjective:

(3.1)

Λ Λ1

Λ2 Λ′

i1

i2 j1

j2

This being a pullback square implies that

Λ ∼= Λ1 ×Λ′ Λ2 := {(λ1, λ2) ∈ Λ1 × Λ2 | j1(λ1) = j2(λ2)}.

Recall from Section 2.2 we have that for any ring homomorphism f : Λ → Λ′ and any left Λ-
module we have another left Λ-module f♯(M) := Λ1⊗ΛM . We also have a map f∗ : M → f♯M
given by sending m 7→ 1⊗m. The map f∗ is clearly Λ-linear as

λm 7→ 1⊗ λm = f(λ)⊗m = λ · (1⊗m).

Definition 3.1. Suppose we are in the situation given in Equation (3.1). Let Pk be a
projective Λk-module for k ∈ 0, 1 and let h : (j1)♯P1 →

∼= (j2)♯P2 be a Λ′-module isomorphism.
We define a new module M as

M(P1, P2, h) = {(p1, p2) ∈ P1 × P2 | h(j1)∗(p1) = (j2)∗(p2)}.

This means that we have the analogous pullback square

M(P1, P2, h) P1

P2 (j2)♯P2

π1

π2 h(j1)∗

(j2)∗

where πk denote the obvious projection maps onto the respective factors. This pullback
square satisfies the similar property that either (j2)∗ or h(j1)∗ is surjective. Note that there
is a natural Λ-module structure on M given by λ · (p1, p2) = (i1(λ) · p1, i2(λ) · p2).

Remark 3.2. There exists a natural isomorphism from M(P1, P2, h) to M(P2, P1, h
−1) and so

the apparent asymmetry between P1 and P2 in Definition 3.1 is not important. This means
that without loss of generality we can assume that either map is surjective.

We now state three theorems about this construction.

Theorem 3.3. The constructed module M(P1, P2, h) is projective as a Λ-module. Moreover,
if P1 and P2 are finitely generated, then M is also finitely generated.

Theorem 3.4. Every projective Λ-module is isomorphic to M(P1, P2, h) for some P1, P2 and
h.

Theorem 3.5. If M = M(P1, P2, h), then P1 and P2 are naturally isomorphic to (i1)♯M and
(i2)♯M , respectively.
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3.1. Proof of Theorem 3.3. We will slowly work our way up to the proof by proving weaker
versions. To start, let us suppose that P1 and P2 are free modules. We aim to show that in
this case M is projective. Let {xα} and {yβ} be bases for P1 and P2, respectively. It follows
that {(j1)∗xα} and {(j2)∗yβ} are bases for (j1)♯P1 and (j2)♯P2, respectively. We then write
A = (aαβ) for the matrix representing the isomorphism h : (j1)♯P1 → (j2)♯P2. Note that A
may be infinite but only has finitely many non-zero entries in each row. In terms of the bases,
this means that

h : (j1)∗xα 7→ Σaαβ(j2)∗yβ.

We also note that since h is an isomorphism, A must be invertible and we denote the inverse
in the usual way as A−1.

Lemma 3.6. If the matrix A as above is the image entry-wise under j2 of an invertible matrix
over Λ2, then M(P1, P2, h) is free.

Proof. Assume aαβ = j2(cαβ) for some C = (cαβ) an invertible matrix over Λ2. Define
elements y′α := Σcαβyβ ∈ P2. We would like to write down a basis for M . First, we perform
the following calculation:

h(j1)∗xα = Σaαβ(j2)∗yβ

= Σj2(cαβ)(j2)∗yβ

= (j2)∗(Σcαβyβ) = (j2)∗y
′
α

This calculation tells us that (xα, y
′
α) is an element of M . We then define a set of elements

zα := (xα, y
′
α) ∈ M ⊂ P1 × P2. We claim that {zα} is a basis for M and hence M is free.

First assume that there is a relation between the zα, i.e. there exist elements λα such that
Σλαzα = 0. This implies that Σi1(λα)xα = 0 and Σi2(λα)y

′
α = 0. However, since the xα and

y′α form bases of P1 and P2, this implies that ikλα = 0 for all α and k ∈ {0, 1}. Hence, λα = 0
for all α.

To finish we show that {zα} is a spanning set. Let (Σλαxα,Σµαy
′
α) be an element of P1×P2

such that h(j1)∗(Σλαxα) = (j2)∗(Σµαy
′
α). This implies

Σj1(λα)h(j1)∗xα = Σj2(µα)(j2)∗y
′
α.

Linear independence then gives us that j1(λα) = j2(µα). Then by the pullback square there
must exist γα ∈ Λ such that (i1)γα = λα and (i2)γα. Hence we have that

Σγαzα = (Σλαxα,Σµαy
′
α)

and so {zα} is spanning, finishing the proof. □

Lemma 3.7. Let P1, P2 be free and j2 : Λ2 → Λ′ be surjective. Then M(P1, P2, h) is a
projective Λ-module.

Proof. Let Q1 be free over Λ1 with basis {µβ} in a formal one-to-one correspondence with
{yβ} a basis for P2. Similarly, let Q2 be a free over Λ2 with a basis {να} corresponding to
{xα} a basis for P1. Let

g : (j1)♯Q1 → (j2)♯Q2

be the isomorphism of Λ-modules represented by the matrix A−1, where A represents h.
Observe that

M(P1, P2, h)⊕M(Q1, Q2, g) ∼= M(P1 ⊕ P2, Q1 ⊕Q2, h⊕ g).
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We claim that h⊕ g satisfies Lemma 3.6. This would finish the proof since then M(P1, P2, h)
would be a direct summand of a free module. We finish by proving the claim. Denote by I
the identity matrix (of appropriate rank) and consider the following block matrix equation:A 0

0 A−1

 =

I A

0 −I

 I 0

−A−1 I

I A

0 I

0 −I

I 0

 .

Each factor in the right-hand side of the equation clearly is the image under j2 of some matrix
in Λ2 and these matrices all have the forms:I ∗

0 −I

 ,

I 0

∗ I

 ,

I ∗

0 I

 ,

0 −I

I 0


and all of these are invertible. Hence the claim is proved. □

We now move towards the general case where P1 and P2 are projective and the proof of
Theorem 3.3, but first we state a lemma without proof.

Lemma 3.8. Let P1 be projective over Λ1 and P2 projective over Λ2. Then there exist
projective modules Qk over Λk for k ∈ {1, 2} such that P1 ⊕ Q1 and P2 ⊕ Q2 are both free.

Furthermore, there exists an isomorphism k : (j1)♯Q1
∼=−→ (j2)♯Q2.

Proof of Theorem 3.3. We start by choosing Q1, Q2 as given to us by Lemma 3.8. We then
have that

M(P1, P2, h)⊕M(Q1, Q2, k) ∼= M(P1 ⊕ P2, Q1 ⊕Q2, h⊕ k).

and Lemma 3.7 gives us that the right-hand side is projective. Hence M is a summand of a
projective module which implies M is a summand of a free module and therefore is projective,
completing the proof. □

4. K1 and the Whitehead group

4.1. Definition of K1. Let Λ be a ring and let GL(n,Λ) denote the group of n×n invertible
matrices with entries in Λ. We have inclusions

GL(1,Λ) ⊂ GL(2,Λ) ⊂ GL(3,Λ) ⊂ . . .

where the inclusion map is given by sending

GL(n,Λ) ∋ A 7→

A 0

0 1

 ∈ GL(n+ 1,Λ).

We then define GL(Λ) := ∪nGL(n,Λ) to be the limit.

Definition 4.1. We say that a matrix E ∈ GL(Λ) is elementary if has only one non-zero
off-diagonal entry and all of its diagonal entries are equal to 1. For i ̸= j and a ̸= 0 we write
En

ij(a) for the elementary matrix of dimension n whose single non-zero off-diagonal entry is

equal to a. Let E(Λ) ⊂ GL(Λ) be the subgroup generated by elementary matrices.

Remark 4.2. Multiplication by an elementary matrix corresponds to performing an elementary
row or column operation, and every row or column operation can be realised via multiplica-
tion by an elementary matrix. Left multiplication corresponds to row operations, and right
multiplication corresponds to column operation. Hence, a matrix can be written as a product
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of elementary matrices if and only if it can be reduced to the identity matrix by a finite
sequence of row and column operations.

Lemma 4.3. The subgroup generated by elementary matrices E(Λ) is equal to the commutator
subgroup, i.e.

E(Λ) = [GL(Λ),GL(Λ)].

Proof. Basic matrix multiplication gives the following equality for i ̸= l and n ≥ 3:

[En
ij(a), E

n
kl(b)] =

{
En

il(ab) if j=k

I else.

This proves that every elementary is a commutator (of elementary matrices). For the reverse
inclusion, represent the commutator [A,B] = ABA−1B−1 as the block matrixABA−1B−1 0

0 I

 =

AB 0

0 A−1B−1

(BA)−1 0

0 BA


=

A 0

0 A−1

B 0

0 B−1

(BA)−1 0

0 BA

 .

As was noted in the proof of Lemma 3.7, we can write each of the matrices in the above
product in the form I ∗

0 −I

I 0

∗ I

I ∗

0 I

0 −I

I 0

 .

It is not hard to see that we can transform all of the above matrices into the identity matrix
via a sequence of row and column operations, and hence the commutator can be written as a
product of elementary matrices, completing the proof. □

As an immediate consequence of this, we see that E(Λ) is a normal subgroup. We now
define K1.

Definition 4.4. We define the torsion group K1(Λ) := GL(Λ)/E(Λ). This is well-defined
and abelian by Lemma 4.3.

Exercise 4.5. Show that K1 is a covariant functor by defining the obvious map K1(Λ) →
K1(Λ

′) given a ring homomorphism Λ → Λ′.

We can say more about K1(Λ) if Λ is commutative. Naturally, assume now that Λ is
commutative. The determinant map det : GL(Λ) → Λ× is now well-defined we define SL(Λ)
to be the kernel of this map. We then have the exact sequence

SL(Λ)/E(Λ) → K1(Λ)
det−−→ Λ×

which splits. To see this, note that we have an inclusion Λ× = GL(1,Λ) ⊂ GL(Λ) and
the inclusion post-composed with det is clearly the identity map. This means we have an
isomorphism

K1(Λ) = Λ× ⊕ SK(Λ)

where we have defined SK1(Λ) = SL(Λ)/E(Λ).
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Example 4.6. In many cases, SK(Λ) vanishes and so K1(Λ) = Λ×. Here are some examples
where that occurs.

• If Λ is a field.
• If Λ is Z or any Euclidean domain.
• If Λ has only finitely many ideals.
• If Λ is the ring of a integers of a finite extension of Q.
• If Λ is Z[Z/p] for p a prime.

However, SK1(Λ) does not always vanish. Let Λ = R[X,Y ]/(X2 + Y 2 − 1) where X,Y are

abstract variables, then SK1(Λ) ∼= Z/2 generated by the matrix

 X Y

−Y X

.
4.2. The Whitehead group. We now turn briefly to the Whitehead group, which was
mentioned (not by name) in Section 1.2.3. Let

τ : GL(n,Λ) → K1(Λ)

be the obvious map given by the inclusion followed taking the quotient. We call this the
torsion map.

Definition 4.7. We now define the reduced torsion group

K1(Λ) := K1(Λ)/{τ(−1)}

where we consider −1 ∈ GL(1,Λ). Furthermore, let π be a group and let Λ = Z[π]. We then
define the Whitehead group

Wh(π) := K1(Λ)/{τ(±g) | g ∈ π}.

Remark 4.8. The same thing in different words is that we have a sequence of maps

π → K1(Z[π]) → K1(Z[π])

and then the Whitehead group is the cokernel, i.e. Wh(π) = K1(Z[π])/ im(π).

Recall from Section 1.2.3 that we say a homotopy equivalence of CW-complexes is simple
if it can be written as a sequence of elementary expansions or contractions. We mentioned
a result which said that a homotopy equivalence f : X → Y is simple if and only if the
map’s Whitehead torsion τ(f) = 0 ∈ Wh(π), and we have now described the group that this
obstruction lives in. Of course, we have not yet defined what Whitehead torsion is. However,
if the Whitehead group vanishes then conceptually this is not a problem, so we will now give
some examples where this is the case.

Example 4.9. The Whitehead group Wh(π) vanishes if

• π is Z.
• π is Z/2,Z/3,Z/4.
• π is free abelian.
• π is free.

It is conjectured that Wh(π) = 0 for all torsion-free π. Of course, this group does not always
vanish. For example, Wh(Z/5) ∼= Z.
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Example 4.10. Proving that Wh(Z/5) ∼= Z is highly non-trivial, but we try to give a little
idea here of why this might be true.

From Example 4.6 we know that K1(Z[Z/5]) ∼= (Z[Z/5])×. Write t for the generator of Z/p
in Z[Z/p]. Define an element u := t+t−1−1 ∈ Z[Z/5] and we claim that u generates Wh(Z/5).
First, we need to show that u is a unit, but this is easy as (t+ t−1−1)(t2+ t−2−1) = 1. Next,
we show that u has infinite order in K1(Z[Z/5]). Define a homomorphism θ : (Z[Z/5]) → C
by t 7→ ζ = e2πi/5. Then it is not hard to see that θ(u) = 2 cos(72

◦
)− 1 ∈ R and hence θ(u)

has infinite order in C.
Of course, this does not prove that u has infinite order in Wh(Z/5), or indeed that it

generates the whole group. Nevertheless, this gives some idea of why Wh(Z/5) might be
non-trivial.

4.3. A Mayer-Vietoris sequence for K0 and K1. We now will relate the groups K0

and K1 using a ‘Mayer-Vietoris’ sequence, called that because it will closely resemble the
familiar Mayer-Vietoris sequence from Algebraic Topology. First, assume we again have rings
Λ,Λ1,Λ2,Λ

′ and maps that satisfy the same pullback square in Equation (3.1). Without loss
of generality assume that j2 : Λ2 → Λ′ is surjective. Consider the following sequence:

(†)
K1(Λ)

K1(Λ1)

⊕

K1(Λ2)

K1(Λ
′) K0(Λ)

K0(Λ1)

⊕

K0(Λ2)

K0(Λ
′)

(I)

(II) (III)

(IV)

ι1 q1 ∂ ι0 q0

where

ια : x 7→
(
(i1)∗(x), (i2)∗(x)

)
,

qα : (y, z) 7→ (j1)∗(y)− (j2)∗(z)

and the ‘boundary map’ ∂ is defined in the following manner. Let [X] ∈ K1(Λ
′)) with X

a matrix representative. Given standard bases for Λn
1 and Λn

2 , X represents an isomorphism
h : (j1)♯Λ

n
1 → (j2)♯Λ

n
2 . Now let M = M(Λn

1 ,Λ
n
2 , h), using the construction from Definition 3.1,

and we define

∂ : [X] 7→ [M ]− [Λn].

Lemma 4.11. The map ∂ : K1(Λ
′) → K0(Λ) as defined above is a well-defined homomor-

phism.

Proof. Proof We start with showing the map is well-defined. Let E′ be some elementary
matrix over Λ′ and we may assume it has the same dimension as X without loss of generality.
The aim is to show that the modules M = M(Λn

1 ,Λ
n
2 , h) and M ′ = M(Λn

1 ,Λ
n
2 , h

′) are isomor-
phic where h′ is the isomorphism corresponding to XE′. Since j2 is surjective, we can lift E′

to a matrix E2 over Λ2 which must itself be an elementary matrix, and thus invertible. Hence,

the matrix

I 0

0 E2

 defines an map Λn
1 × Λn

2 which restricts to an isomorphism between M

and M ′.
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Having shown that the map is well-defined, it is easy to see it is a homomorphism by
considering the following matrix identity:XY 0

0 I

Y −1 0

0 Y

 =

X 0

0 Y


and so the leftmost and rightmost equations are equivalent under multiplication by elementary
matrices. This implies that ∂([X][Y ]) = ∂([XY ]) = ∂([X])⊕∂([Y ]), completing the proof. □

Theorem 4.12. The ‘Mayer-Vietoris’ sequence † is exact.

Proof (sketch). Exactness at positions (I) and (IV) follows from the properties of the pullback
square Equation (3.1). Exactness at positions (II) and (III) is more interesting since it involves
the boundary map ∂. We will only show exactness at position (III).

Assume M ∈ im ∂, then M = M(Λn
1 ,Λ

n
2 , h) for some n and h. This implies that both

(i1)∗(M) and (i2)∗(M) are stably-free and hence ι0(M) = 0.
Conversely, assume that ι0(M) = 0. This means that both (i1)∗(M) and (i2)∗(M) are

stably-free and by Theorem 3.4 and Theorem 3.5 this implies that M ∼= M(Λn
1 ,Λ

n
2 , h) for

some n and h. If we represent h by a matrix X, then clearly ∂[X] = M and so M ∈ im ∂. □

Exercise 4.13. Complete the proof of Theorem 4.12 by showing exactness of † at positions
(I), (II) and (IV).

We now show an application of the sequence † which allows us to compute K0(Z[Z/p]). Let
p be a prime and ζ = e2πi/p be a primitive pth root of unity. Consider the following diagram.

(‡)
Z[Z/p] Z[ζ]

Z Z/p

i1

i2 j1

j2

where the maps are described as follows. Write t for the generator of Z/p in Z[Z/p]. Then
i1 is the map that sends t 7→ ζ, i2 is the map which sends t 7→ 1, j1 is the map which sends
ζ 7→ 1 and reduces modulo p, and finally j2 is the map which reduces modulo p. To use this
square to get a Mayer-Vietoris sequence, we need that at least one of j1 or j2 is surjective
and that this is a pullback square. The first condition is obviously true since both j1 and j2
are clearly surjective.

Lemma 4.14. The square ‡ is a pullback.

Proof. Consider the map i : Z[Z/p] → Z[ζ]×Z given by sending x → (i1(x), i2(x)). Clearly this
is an injective homomorphism. We need to show that the image of i is equal to the pullback
{(a, b) ∈ Z[Z/p]×Z | j1(a) = j2(b)}. It is not hard to see that j1 ◦ i1(x) = j2 ◦ i2(x) and so the

image of i is contained in the pullback. For the other inclusion, let (a, b) = (Σp−1
k=0αkζ

k, N) be

an element in the pullback. Then set x′ = Σp−1
k=0αkt

0 ∈ Z[Z/p]. Clearly i1(x
′) = a, and we also

have that N − b ∼= 0 mod p. Let K = N − b and then define x = x+K(1+ t+ t2+ · · ·+ tp−1).
Since 1+ζ+ · · ·+ζp−1 = 0 we still have i1(x) = a but now also i2(x) = b, and hence i surjects
onto the pullback, completing the proof. □

Hence we can form the Mayer-Vietoris sequence for the square ‡. For reference, we write
this out again below with some additional maps emphasised.
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K1(Z[Z/p])
K1(Z[ζ])

⊕

K1(Z)

K1(Z/p) K0(Z[Z/p])
K0(Z[ζ])

⊕

K0(Z)

K0(Z/p)
ι1 q1

(j1)∗

∂ ι0

(i1)∗

(j2)∗

q0

Theorem 4.15. The map (i1)∗ : K0(Z[Z/p]) → K0(Z[ζ]) is an isomorphism.

Proof. We know from Example 2.3 that K0(Z) ∼= K0(Z) ∼= Z generated by [Z] and [Z/p],
respectively. This means that the map (j2)∗ : K0(Z) → K0(Z/p) is an isomorphism. Hence,
we can conclude via exactness that im(ι0) = K0(Z[ζ]) and so to prove the theorem we have
to show that ker(ι0) = 0. Via exactness and the first isomorphism theorem for groups, this
is equivalent to showing that q1 is surjective. We will show that (j1)∗ is surjective, which
suffices.

Recall from Example 4.6 that we have that K1(Z[ζ]) ∼= (Z[ζ])× and K1(Z/p) ∼= (Z/p)×.
Hence, we need to find a unit in Z[ζ] which maps to any given unit in Z/p. Let k ∈
{0, 1, . . . , p−1}. Then define an element uk := ζk−1

ζ−1 = 1+ζ+ · · ·+ζk−1, let l = k−1 ∈ (Z/p)×

and set η = ζk. The inverse for uk is given as vk = ηl−1
η−1 ∈ Z[Z/p], since

uk · vk =
ζk − 1

ζ − 1
· η

l − 1

η − 1
=

ζk − 1

ζ − 1
· ζ

kl − 1

ζk − 1
=

ζk − 1

ζ − 1
· ζ − 1

ζk − 1
= 1.

Hence uk is a unit. Then note that (j1)∗(uk) = k ∈ (Z/p)× and hence (j1)∗ is surjective,
completing the proof. □

The upshot of this theorem is that we can understand K0(Z[ζ]) fairly well since Z[ζ] is a
Dedekind domain. From Corollary 2.16 we have K0(Z[ζ]) ∼= Z⊕C(Z[ζ]) where C(Z[ζ]) is the
ideal class group. This was studied extensively by number theorists in the 19th century as it
had connections to Fermat’s last theorem. We have the following table for p ≤ 50. Omitted
primes have trivial C(Z[ζ]).

p C(Z[ζ])

23 Z/3

29 (Z/2)3

31 Z/9

37 Z/37

41 (Z/11)2

43 Z/211

47 Z/5⊕ Z/139

5. Whitehead torsion

We take a slight detour to define the Whitehead torsion which was mentioned in Sec-
tion 1.2.3. The idea is to define an algebraic invariant called torsion to a contractible chain
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complex (sometimes called an acyclic or exact chain complex). This torsion will correspond
to the torsion defined in Section 4.2. Once that is done, we will show how to associate to
any homotopy equivalence a contractible chain complex, which will allow us to the define the
torsion of the homotopy equivalence.

Let (C∗, ∂) be a contractible chain complex of based Λ-modules and let Γ: 0 ≃ Id be a
chain contraction. Recall that a chain contraction is a map Γ: C∗ → C∗ which satisfies
∂Γ + Γ∂ = Id−0 = Id (the below commutative diagram may be useful for conceptualising
this).

· · · C3 C2 C1 C0 0

· · · C3 C2 C1 C0 0

∂ ∂

Γ

∂

Γ Γ

∂ ∂ ∂

We define a map

∂ + Γ :=


∂

Γ ∂

Γ ∂

. . .
. . .

 : C1 ⊕ C3 ⊕ C5 ⊕ · · · → C0 ⊕ C2 ⊕ C4 ⊕ . . .

We will use the shorthand Codd = C1 ⊕C3 ⊕C5 ⊕ . . . and Ceven = C0 ⊕C2 ⊕C4 ⊕ . . . for
brevity.

Exercise 5.1. Show that

(∂ + Γ)−1 =


1

Γ2 1

Γ2 1

. . .
. . .



−1
Γ ∂

Γ ∂

Γ
. . .

. . .


using the fact that Γ is a chain contraction.

The above means that ∂ +Γ ∈ GL(Λ) so the torsion τ(∂ +Γ) is defined. We would like to
define the torsion of C∗ to be this, but we have made a choice of a chain contraction. The
following lemma shows that this does not matter.

Lemma 5.2. Let Γ and Γ′ be two chain contractions of C∗ and let

∆i = Γ(Γ′ − Γ): Ci → Ci+2

which produces chain maps ∆: Codd → Codd and ∆even : Ceven → Ceven. Then

∂ + Γ′ = (1 +∆even)(∂ + Γ)(1 + ∆odd)
−1

with
τ(1 + ∆even) = τ(1 + ∆odd) = 0.

Proof. For the second fact, it is not too hard to see that both (1 + ∆even) and (1 + ∆odd)
can be reduced to the identity matrix by a sequence of row and column operations and hence
their torsions are trivial. □
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Definition 5.3. Let (C∗, ∂) be a contractible chain complex of based Λ-modules and Γ a
chain contraction. Then we define the torsion of C∗ as τ(C∗) = τ(∂+Γ). By Lemma 5.2 this
does not depend on the choice of chain contraction Γ and hence is well-defined.

Now let f : X
≃−→ Y be a homotopy equivalence of finite CW complexes and let π := π1(Y ).

The map f then induces a chain equivalence of Z[π]-modules f∗ : C∗(X̃) → C∗(Ỹ ) where X̃

and Ỹ denote the universal covers of X and Y .
Choose bases for C∗(X̃) and C∗(Ỹ ) and let C (f∗) be the algebraic mapping cone of f∗.

Recall that given any chain map ε : (A∗, ∂A) → (B∗, ∂B) the algebraic mapping cone C (ε) is
the chain complex

C (ε)k =

Ak−1 ⊕Bk,

 ∂A 0

(−1)kε ∂B

 .

It is a standard fact that the mapping cone of a chain equivalence is chain contractible.
We would like to define τ(f) = τ(C (f∗)) using Definition 5.3, but this is not well-defined

in K1(Z[π]) since our choice of bases for C∗(X̃) and C∗(Ỹ ) affect the result. However, it is
not too difficult to see that our choices only differ by multiplication by ±1 and elements of π,
therefore we see that τ(f) is well-defined in K1(Z[π])/{τ(±g) | g ∈ π} = Wh(π). (One might

also worry about the choice of base-points for X̃ and Ỹ , but a change of base-points will only
change the torsion in K1(Z[π]) by conjugation, but K1(Z[π]) is abelian by Lemma 4.3 and
hence this has no effect).

Definition 5.4. We now define the Whitehead torsion of a homotopy equivalence f as above
to be τ(f) := τ(C (f∗)) ∈ Wh(π).

From this perspective, the definition of the Whitehead group comes about very naturally.
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